1328863 发表于 2018-7-13 10:17:27

2018经济学分支介绍(11)——数理经济学

  数理经济学是运用数学方法对经济学理论进行陈述和研究的一个分支学科。在经济史上把从事这样研究的人叫做数理经济学家,并且归为数理经济学派,简称数理学派。
西方第一个把数学用于经济问题的是意大利的切瓦,他于1711年写了一本关于货币价值的书。但首先比较系统地运用数学的,是1838年法国库尔诺的《财富理论数学原理的研究》,这书常被当做数理经济学的开端。
由于当时的经济理论权威们不熟悉数学推理,而无人问津,直到40年后因受到英国的杰文斯和法国的瓦尔拉斯的高度推崇,才知名于世,并被当做数理经济学和数理学派的正式起源。此后英国的埃奇沃思、马歇尔、美国的费希尔、意大利的帕累托等进一步发展了数理经济学。
库尔诺并没有用过“数理经济学”的名称,他采用的书名用意不仅在于理论研究,而且在研究中要运用数学分析的形式和符号。他认为在财富理论中运用数学分析 ,是为了探索不能用数字表现的数量之间的关系,和不能用代数表现的函数之间的关系;即使不需要精确数字,只要能更简明地陈述问题、开辟研究途径、避免脱离主题,数学也有其有用之处,如果仅仅因为不熟悉或怕用错而拒绝数学分析,是荒谬的。
杰文斯1862年发表的论文《略论政治经济学的一般数学理论》是数理经济学的最早名称,到1879年他的主要著作《政治经济学理论》一书再版时,附上1711年以来的“数学的经济的”文献目录,等于公开宣称数理经济学的存在。他认为经济学要成为一门科学,必须是一门依赖于数学的科学,简单原因就是研究数量和数量之间的复杂关系,必须进行数学推理,即使不用代数符号,也不会减少这门科学的数学性质。
杰文斯的目的是要为价值的最终理论以及建立在这个理论之上的市场规律提供数学解说。他的理论中心是“价值完全由效用决定”。他把商品对所有者的效用分为总效用和最后程度的效用(即后来的边际效用),后者是商品拥有或消费总量增加时,总效用增加量对商品增加量的比率。
页: [1]
查看完整版本: 2018经济学分支介绍(11)——数理经济学