|
【分析】(1)利用△=b2﹣4ac=0时,抛物线与x轴有1个交点得到4a2﹣4a=0,然后解关于a的方程求出a,即可得到抛物线解析式; (2)利用点C是线段AB的中点可判断点A与点B的横坐标互为相反数,则可以利用抛物线解析式确定B点坐标,然后利用待定系数法求直线AB的解析式. 【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A, ∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1, ∴抛物线解析式为y=x2+2x+1; (2)∵y=(x+1)2, ∴顶点A的坐标为(﹣1,0), ∵点C是线段AB的中点, 即点A与点B关于C点对称, ∴B点的横坐标为1, 当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4), 设直线AB的解析式为y=kx+b,
完整试题以及参考答案,请下载附件
|